8th grade Science STAAR Review
 Objective 2: Force, Motion, \& Energy

8.6.A demonstrate and calculate how unbalanced forces change the speed or direction of an object's motion

Force
A Force is a Push or a Pull that can change motion.
How Force is Measured
Newton - The SI unit used to measure force. The symbol for Newton is \mathbf{N}.

Net Force= mass x acceleration

$$
\mathbf{F}=\mathbf{m} \mathbf{x} \mathbf{a}
$$

I am a roller skater with a mass of 72 kg . If 1 am accelerating toward a wall at $3.7 \mathrm{~m} / \mathrm{s}^{2}$, what will be the amount of force at which I hit the wall?

| Spring Scale - Measures Force in |
| :--- | :--- |
| Newtons (N). |

Net Force

When more than one force acts on an object, the forces combine to form a Net Force. The combination of all the forces acting on an object is the Net Force.

Magnitude is the size of a force.

8.6.C

investigate and describe applications of Newton's law of inertia, law of force and acceleration, and law of action-reaction
such as in vehicle restraints, sports activities, amusement park rides, Earth's tectonic activities, and rocket launches

Newton's $1^{\text {st }}$ Law

Newton's First Law: An object at rest will remain at rest unless acted on by an unbalanced force. An object in motion continues in motion with the same speed and in the same direction unless acted upon by an unbalanced force.

This law is often called the Law of Inertia

Examples of Newton's 1st Law:

- Car suddenly stops and you strain against the seat belt (vehicle restraints) because our bodies want to keep moving
- When riding a horse, the horse suddenly stops and you fly over its head
- Ketchup stays in the bottom (at rest) until you bang (outside force) on the end of the bottom
- Can you think of another example?

Newton's $\mathbf{2}^{\text {nd }}$ Law

Newton's Second Law: Acceleration is produced when a force acts on a mass. The greater the mass (of the object being accelerated) the greater the amount of force needed (to accelerate the object). It can be measured by

$$
F=M \times A
$$

This law is often called the Law of Acceleration

Calculate

\qquad $=$ \qquad 500 N

Examples of Newton's 2nd Law:

- Hitting a baseball- the harder the hit, the faster the ball goes accelerating
- A grocery cart filled with lots of food vs. an empty grocery cart
- The positioning of football players - massive players on the line with lighter (faster to accelerate) players in the backfield
- Can you think of another example? \qquad

Newton's $3^{\text {rd }}$ Law

Newton's Third Law: For every action there is an equal and opposite re-action. For every force there is a reaction force that is equal in size, but opposite in direction. This law is often called the Law of Action-Reaction.

Examples of Newton's 3rd Law:

- Momentum of the car moving forward and the car comes to a sudden stop, our body pushes against the seat (action) belt and the seat belt pushes back (reaction).
- When you lean on the wall to rest, the weight on the wall provides the reaction force and the wall pushes back on you (reaction force) with the same force.
- As the gases move downward, the rocket moves in the opposite direction.
- Can you think of another example? \qquad

Use the Arrows to show Action and Reaction in the pictures below.

Leaning on wall

Rocket lifting off
Forces may move an object
Balanced - Forces that are equal in
magnitude but opposite in direction.
Balanced forces do not cause a change in
the motion of objects.

8.6.B differentiate

 between speed, velocity, and acceleration7.7.A contrast situations where work is done with different amounts of force to situations where no work is done such as moving a box with a ramp and without a ramp, or standing still

Speed, Velocity \& Acceleration

Speed is the rate used to measure the distance traveled over a period of time.

Velocity is a measure of the speed in a given direction.

Question: A green helicopter is moving up at 30 kilometers per hour. A blue helicopter is moving down at 30 kilometers per hour.
A. Are the helicopters' speeds the same? Explain.
B. Are the velocities the same? Explain.

- Acceleration is the change of velocity over a period of time.
- If speed or direction changes, then you have acceleration.

In your own words, explain the differences between speed, velocity, and acceleration.

Work

Work is the amount of force applied times the distance over which it is applied. In order for work to occur or happen... THE OBJECT MUST MOVE IN THE DIRECTION OF THE FORCE APPLIED.

1. A force of 825 N is needed to push a car across a lot. Two student push the car 35 m . How much work is done?
2. You push against the wall for 3 min with a force of 10 N . How much work is done? Explain.

 time measurements

Potential to Kinetic Energy

When the coaster is at its highest point on the track, it has it the greatest potential energy. As the coaster loses height it gains speed: PE is transformed into KE. As the coaster gains height it loses speed: KE is transformed into PE.

$$
\begin{aligned}
& \text { Average speed }=\frac{\text { distance }}{\text { time }} \\
& \mathrm{s}=\mathrm{d} / \mathrm{t}
\end{aligned}
$$

Solve:

1. You arrive in my class 45 seconds after leaving math which is 90 meters away. How fast did you travel?
2. You need to get to class, 200 meters away, and you can only walk in the hallways at about $1.5 \mathrm{~m} / \mathrm{s}$. (if you run any faster, you'll be caught for running). How much time will it take to get to your class?
6.8.D measure and graph changes in motion

Graphing Motion

Time (sec)	Distance (m)
1	5
2	10
3	15
4	30
5	35
6	40

$$
\text { Speed }=\frac{\text { distance }}{\text { time }} \quad S=\underline{d}
$$

energy in a flashlight battery changes from chemical energy to electrical energy to light energy

Energy

Energy is the ability to do work.
Forms of Energy:

1. Electrical
2. Chemical
3. Radiant/Solar
4. Nuclear
5. Mechanical

Categories of Energy

Potential	Kinetic
1. Chemical	1. Radiant / Sunlight
2. Mechanical	2. Thermal / Heat
3. Nuclear	3. Electrical
	4. Sound
	5. Mechanical

* Mechanical Energy can be both potential and kinetic.

Electrical Energy

Forms of Energy	Description of Energy
Electrical	Delivered by tiny charged particles called electrons, this form of energy is typically moved through a wire.

Example: Lighting or Electricity

Radiant Energy

Forms of Energy	Description of Energy
Radiant / Solar	Energy that travels as light

Example: Sunshine	Solar Energy - energy from the Sun only Radiant Energy - energy from all other light sources

Nuclear Energy

Forms of Energy	Description of Energy
Nuclear	Energy stored in the nucleus of an atom - the energy that holds the nucleus together.
Example: Nuclear power plants split the nuclei of uranium atoms.	

Thermal Energy

Forms of Energy	Description of Energy
Thermal / Heat	The vibration and movement of the atoms and molecules within substances. As an object is heated up, its atoms and molecules move and collide faster.
Example: Geothermal - heat from the	
earth.	

Mechanical Energy

Forms of Energy	Description of Energy
Mechanical	Potential energy stored in objects by tension. Kinetic energy when machine parts are moving.

Example: Gears or compressed spring; moving parts

Sound Energy

Forms of Energy	Description of Energy
Sound	The movement of energy through substances. Sound is produced when a force causes an object or substance to vibrate.

Example: Moving guitar strings

Chemical Energy

Forms of Energy	Description of Energy
Chemical	Energy stored within the bonds of atoms and molecules.

Example: Gasoline, Batteries, or Food

Energy Transformations

Energy can change from one form to another.

Example: Kinetic Energy can turn into potential energy and back again.
Chemical Energy can be used to create Electrical Energy and Electrical Energy can be used to create Heat Energy
Law of Conservation - Energy cannot be created or destroyed but can only change from one form to another.

Chemical - Electrical	Radiant - Chemical
Buclear - Electrical	
electricity to turn on the light bulb.	

Energy Transformations

Chemical - Mechanical

